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Semi-active vibration control based on magnetorheological (MR) materials offers

excellent potential for high bandwidth control through rapid variations in the

rheological properties of the fluid under varying magnetic field. Such fluids may be

conveniently applied to partial or more critical components of a large structure to

This study investigates the properties and vibration responses of a partially treated

multi-layer MR fluid beam. The governing equations of a partially treated multi-layered

MR beam are formulated using finite element method and Ritz formulation. The validity

of the proposed finite element formulations is demonstrated by comparing the results

with those obtained from the Ritz formulation and the experimental measurements.

The properties of different configurations of a partially treated MR-fluid beam are

evaluated to investigate the influences of the location and length of the MR-fluid for

different boundary conditions. The properties in terms of natural frequencies and loss

factors corresponding to various modes are evaluated under different magnetic field

intensities and compared with those of the fully treated beams. The effect of location of

the fluid treatment on deflection mode shapes is also investigated. The forced vibration

responses of the various configurations of partially treated MR sandwich beam are also

evaluated under harmonic force excitations. The results suggest that the natural

frequencies and transverse displacement response of the partially treated MR beams are

strongly influenced not only by the intensity of the applied magnetic field, but also by

the location and the length of the fluid pocket. The application of partial treatment

could also alter the deflection pattern of the beam, particularly the location of the peak

deflection.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration control systems are known to yield enhanced vibration suppression of structures and adapt to changes
in the excitation and structural properties [1–3]. The applications of such systems, however, could be justified in situations
where the high cost and large power requirements outweigh the performance gains. Alternatively, semi-active damping
control could yield the performance advantages similar to those of an active control device with only minimal power
requirement [4–6]. Fluids with controllable rheological properties, such as electrorheological (ER) and magnetorheological
(MR) fluids, are increasingly being used as semi-active vibration devices in various applications such as automotive
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suspensions and structures [7–9]. Such fluids can provide significant and rapid changes in the damping and stiffness
properties with application of an electric or magnetic field [10]. Although these have been widely presented as smart
controllable fluids, the ER fluids exhibit a number of shortcomings compared to the MR fluids such as low yield strength,
requirement of high voltage and greater sensitivity to common impurities [11]. The MR fluid, on the other hand, exhibits
yield stress in the order of 2–3 kPa range in the absence of an external magnetic field which rapidly exceeds 80 kPa in the
presence of a magnetic field in the order of 3000 Oe [12]. The MR fluid is also known to be well-suited for high bandwidth
control through rapid variations in its rheological properties under a varying magnetic field.

The properties of ER and MR-fluid dampers have been widely characterized analytically and experimentally for
vibration suppression of structures and systems [9,13,14]. The application and potential benefits of controllable ER and MR
damping devices have been explored in a number of studies employing simple structure models [15,16]. These models
employ lumped ER/MR dampers at selected discrete locations of the structure and require multiple damping elements to
control the vibration corresponding to different modes. The ER/MR fluids have also been implemented to achieve
controllable distributed properties in structures comprising embedded ER/MR material layers between two elastic/metal
layers [17–21]. This approach can facilitate control of structure vibration over a broad range of frequencies through
variations in distributed stiffness and damping properties in response to applied electric or magnetic field.

While a number of studies have analyzed sandwich structures with ER fluids [17–20], the application of MR materials in
sandwich structures have been explored in a very few studies. Yalcintas and Dai [21,22] analyzed the dynamic responses of
a MR fluid adaptive structure using the analytical energy approach and compared the responses with those of the structure
employing ER-fluid. It was concluded that MR fluid based adaptive structure can yield significantly higher natural
frequencies, nearly twice that of the ER fluid based adaptive structure. Sun et al. [23] investigated the dynamic response of
a MR sandwich beam analytically using energy approach and compared the results with the experimental results.
Experiments were also performed to estimate the relationship between the applied magnetic field and the complex shear
modulus of the MR fluid using oscillatory rheometry technique. Yeh and Shih [24] analyzed the dynamic characteristics
and instability of MR adaptive structures based on DiTaranto [25] sixth-order partial differential equation together with
incremental harmonic balance method. Rajamohan et al. [26] investigated the dynamic properties of a MR sandwich beam
using finite element and Ritz formulations and compared the results using the experimental investigations. A free
oscillation experiment was also performed to estimate the complex shear modulus of the MR fluid. The above studies have
considered fully treated beam structures with ER/MR fluid layer over the entire beam length. Alternatively, such fluids may
be applied over the partial beam lengths or more critical section of a large structure to achieve more efficient and compact
vibration control mechanism. Haiqing et al. [27] experimentally analyzed the vibration characteristics of a cantilever beam
locally linked by ER fluid layer to the ground. It was concluded that the locally applied ER fluid layer serves as a complex
spring and thus alters the damping and stiffness properties of the structures under the electric field. The study also
concluded that the cantilever beam with such local treatment exhibits greater sensitive than the full treatment with
regards to the natural frequencies and loss factors. Haiqing and King [28] investigated the vibration response of a fully and
partially treated ER beam clamped at both ends and concluded that the length of the ER fluid layer has a significant effect
on the resonant frequencies and the loss factor. The effectiveness of partial treatment of MR fluids in sandwich structures,
however, has not yet been explored.

In this present study, the governing equation of a partially treated multi-layer MR beam is developed in the
finite element form and Ritz formulation. The validity of the proposed finite element formulations is demonstrated by
comparing the results with those obtained from the Ritz formulation and laboratory measurements performed on a
prototype beam. The effects of lengths and locations of the MR fluid layers on the properties of the beam are investigated
under different intensities of the external magnetic field, and various boundary conditions. Furthermore, the properties of
the partially treated beams are compared with those of the fully treated MR sandwich beam. Finally, the forced
vibration responses of different partially treated MR sandwich beam configurations are evaluated under harmonic force
excitations.
2. Dynamic model of a partially treated multi-layer beam

A partially treated sandwich beam structure can be modeled on the basis of those developed for a fully treated beam.
The beam structure with multiple MR-fluid segments can be modeled by treating each segment independently and then
coupling with the adjacent segments to assure compatible deformation and continuous response of the composite
structure. This could be achieved by imposing compatibility conditions which are identical displacements and the slopes at
the boundaries of the two adjacent segments. A three-layer beam structure comprising a MR-fluid layer over the entire
beam length between two elastic layers, as shown in Fig. 1(a), is considered as the basis for developing the finite element
model and Ritz formulation for the partially treated MR sandwich beam shown in Fig. 1(b). The mid-layer of the partially
treated sandwich beam is composed of elastic layers of lengths L1 and L3 and a MR fluid layer segment of length L2.
Considering that Young’s modulus of the MR-fluid is nearly negligible compared to that of the elastic layers, the normal
stresses in the fluid layer are considered to be neglected. The elastic and fluid layers thickness, h1, h2 and h3, are considered
to be very small compared to the length of the beam. The shear strain and the damping in the elastic layers are also
assumed to be negligible. The slippage between the elastic and fluid layers is further assumed to be negligible.
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Fig. 1. (a) Fully treated MR sandwich beam, (b) partially treated MR sandwich beam, and (c) deformed and undeformed beam cross section.
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Furthermore, the variation of the through the thickness displacement is assumed to be negligible and thus the transverse
displacement w is considered to be uniform throughout the given cross section.

Let the longitudinal displacements of the mid-planes of the top, middle and bottom layers in the x-direction be u1, u and
u3, respectively. As the mid layer is assumed as a neutral layer in the transverse plane, the top and bottom surfaces are
considered to experience axial compression and tension, respectively. Consequently, the axial displacement of the
sandwich beam is considered to be equivalent to the axial displacement at the mid-layer of the beam. The strains and
displacements in the axial and transverse directions are shown in Fig. 1(c). The shear strain g in the MR layer can be
derived from [29]

g¼ @w

@x
þ
@u

@z
(1)

where

@u

@z
¼
ðh1þh3Þ

2h2

@w

@x
þ
ðu1�u3Þ

h2
(2)

and w is the transverse displacement.
That yields shear strain as a function of the layers’ thickness as

g¼ D

h2

@w

@x
þ

u1�u3

h2
(3)

where D¼ h2þ1=2ðh1þh3Þ.
Let F1 and F3 be the longitudinal forces in each of the elastic layers with their lines of action in the mid-planes of the

elastic layers, such that

F1 ¼ E1A1
@u1

@x
, F3 ¼ E3A3

@u3

@x
(4)

where A1 and A3 are the cross section areas of layers 1 and 3, respectively, and E1 and E3 are the corresponding Young’s
moduli. Since the beam is assumed to be free of longitudinal forces, i.e., F1+F3=0. Eq. (4) yields the following relationship
between the longitudinal deflections of the top and bottom layers:

E1A1
@u1

@x
¼�E3A3

@u3

@x
(5)

Integration of the above relation with respect to x yields following relation between the longitudinal displacements at the
top and bottom layers:

u3 ¼�eu1 (6)

where e¼ E1A1=E3A3.
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Buna-N rubber is considered as a sealant material around the edges of the MR-fluid layer segment to contain the MR
fluid within the two elastic layers of the sandwich beam and maintain uniform thickness. The rubber seal and the MR fluid,
however, are modeled as a homogeneous material layer with equivalent shear modulus expressed as

G ¼ Gr
br

b

� �
þG� 1�

br

b

� �
(7)

where G is the equivalent shear modulus of the homogeneous layer, br and b are the widths of the rubber and the entire
beam, respectively, and Gr and G* are the shear modulus of the rubber and MR fluid, respectively.

The shear stress–shear strain properties of MR fluids have been described in many studies [30,31] and characterized by
two distinguished regions, referred to as ‘pre-yield’ and ‘post-yield’ regions, as shown in Fig. 2. MR materials experience
different levels of stress and strain in response to the applied magnetic field and follow a similar pattern in its rheological
behavior. In the pre-yield regime, the MR material demonstrates viscoelastic behavior and is described by the complex
modulus as [30]

G�ðBÞ ¼ G0ðBÞþ iG
00

ðBÞ (8)

While the storage modulus G0ðBÞ is proportional to the average energy stored during a cycle of deformation per unit volume
of the material, the loss modulus G

00

ðBÞ is proportional to the energy dissipated per unit volume of the material over a cycle.
Moreover, both the moduli are functions of the magnetic field intensity B. The post-yield behavior of MR materials is
approximately characterized by the Bingham plastic model, such that [31]

t¼ tyþZ _g (9)

where t is the shear stress, ty is the magnetic field induced dynamic yield stress, Z is the plastic viscosity and _g is the shear
strain rate. Due to the application of the magnetic field through MR fluid, the ferrous particle suspended in the viscous fluid
produces particle chain and yield stress is thus developed [32]. As a result, both storage and loss moduli (Eq. (8)) increase
with increasing magnetic field. Consequently the stiffness and damping properties can be controlled using the applied
magnetic field. This enables an effective mechanism to suppress the vibration of the structural systems [21].
2.1. Formulation of energy equations

Lagrange’s energy approach has been implemented to formulate the governing equations of motion for the partially
treated MR sandwich beam in the finite element form. To accomplish this, the total strain and kinetic energy of the
system are derived. The strain energy due to elastic layers located at top and bottom of the sandwich beam, V1,3 can be
Fig. 2. Shear stress–shear strain relationship of MR materials under varying intensities of magnetic field [29].
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expressed as

V1,3 ¼
1

2

Z L

0
ðE1A1þE3A3e2Þ

@u

@x

� �2

dxþ
1

2

Z L

0
ðE1I1þE3I3Þ

@2w

@x2

 !2

dx (10)

where I1 and I3 are the second moment of inertia at the centroid of the top and bottom elastic layers 1 and 3, respectively.
The middle layer of the beam consists of elastic and MR fluid segments together with the rubber sealant material and

thus the total strain energy of the middle layer of the beam can be expressed as the sum of the strain energy of the MR fluid
layer with rubber material, V2f and that of elastic sections, V2e, such that

V2 ¼ V2f þV2e (11)

The above strain energies for a beam structure with one MR-fluid segment shown in Fig. 1(b), the strain energy associated
with each segment can be expressed as

V2f ¼
1

2

Z L1þ L2

L1

Gbh2
D

h2

@w

@x
�
ð1þeÞu

h2
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dx

and
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1

2

Z L1

0
E2eA2e
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dxþ
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dxþ
1
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dxþ
1
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E2eI2e
@2w
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 !2
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where E2e, A2e and I2e are Young’s modulus, cross section area and second moment of inertia, respectively, of the elastic
segments within the mid layer of the sandwich beam.

The total strain energy V of the sandwich beam structure is expressed as the sum of those due to top, bottom and
middle layers, such that

V ¼ V1þV2þV3 (12)

The kinetic energy of the sandwich beam structure is derived considering: (i) the transverse motion of the top and
bottom elastic layers (T1TBL); (ii) the transverse motion of the middle layer which comprises elastic layer, MR fluid layer
and rubber material (T1ML); (iii) the axial deformations of the top and bottom elastic layers (T2) and (iv) the rotational
deformation of the MR fluid segment due to strain displacement (T3).

The kinetic energy associated with the transverse motions of the top and bottom elastic layers, T1TBL can be expressed as

T1TBL ¼
1

2

Z L

0
ðr1A1þr3A3Þ

@w

@t

� �2

dx (13)

where r1 and r3 are mass densities of the top and bottom elastic layers, respectively.
The kinetic energy associated with the transverse motions of the middle layer of the sandwich beam, T1ML, which

comprises elastic and MR fluid layer segments, and rubber material, can be expressed as the sum of the kinetic energy due
to transverse motion of the elastic layer, T1f, and that of due to MR fluid layer and rubber material, T1e, such that

T1ML ¼ T1f þT1e (14)

where

T1f ¼
1

2

Z L1þ L2

L1

ðr2A2þrrArÞ
@w

@t

� �2

dx

T1e ¼
1

2

Z L1

0
r2eA2e

@w
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� �2

dxþ
1

2

Z L

L1þL2

r2A2e
@w
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� �2
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where r2, r2e and rr are the mass densities of the MR fluid, elastic layer and the rubber materials, respectively.
The kinetic energy associated with axial deformation of the top and bottom elastic layers, T2, can be expressed as

T2 ¼
1

2

Z L

0
ðr1A1þe2r3A3Þ

@u

@t

� �2

dx (15)

and the kinetic energy associated with the rotation due to shear strain of the MR-fluid layer, T3, is expressed by

T3 ¼
1

2

Z L1þL2

L1

I2r2

�ð1þeÞ

h2

@u

@t
þ

D

h2

@2w

@x @t

" #2

dx (16)

where I2 is the second moment of inertia at the centroid of the MR-fluid layer.
The total kinetic energy T of the sandwich beam is then obtained from

T ¼ T1þT2þT3 (17)
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It should be noted that apart from the strain and kinetic energies, the work done by the excitation force, if present,
also needs to be considered in the formulation. The above equations are also applicable for MR-fluid sandwich beam with
either a full-length MR fluid layer or multiple partial MR-fluid segments within the mid-layer.

2.2. Finite element formulation

In finite element analysis (FEM), a standard beam element with two end nodes with three degrees-of-freedom (DOF) for
each node is considered. The DOF include the transverse w, axial u and the rotational y displacements of the beam.
The transverse and axial displacements can be expressed in terms of nodal displacement vectors and shape functions,
as follows:

uðx,tÞ ¼NuðxÞdðtÞ (18)

wðx,tÞ ¼NwðxÞdðtÞ (19)

where d(t)={u1, w1, y1, u2, w2, y2} and Nu(x) and Nw(x) are common linear and cubic polynomial beam shape functions
represented as [33]

N1ðxÞ ¼ 1�
x

le
, N2ðxÞ ¼ 1�

3x2

l2e
þ

2x3

l3e
, N3ðxÞ ¼ x�

2x2

le
þ

x3

l2e

N4ðxÞ ¼
x

le
, N5ðxÞ ¼

3x2

l2e
�

2x3

l3e
, N6ðxÞ ¼�

x2

le
þ

x3

l2e
(20)

where le is the length of the element.
Upon substituting Eqs. (18) and (19) into Eqs. (12) and (17), and subsequently into Lagrange’s equations, described as

d

dt

@T

@ _qi

� �
�
@T

@qi
þ
@V

@qi
¼ Qi, i¼ 1,2,3,n (21)

the governing equations of motion for the undamped partially or fully treated MR sandwich beam element in the finite
element form can be obtained as

me €dþked¼ fe (22)

where n is the total DOF considered in the formulation and Qi is the generalized force corresponding to the ith DOF, me and
ke are the element mass and stiffness matrices, respectively, and fe is the element force vector. The stiffness and mass
matrices of the sandwich beam element containing the MR fluid within its mid-length are summarized in Appendix A. The
element matrices of the sandwich beam containing the elastic material within its mid-layer are not presented since the
standard matrices are available for such elements. Assembling the mass and the stiffness matrices and the force vector for
all the elements, yields the global governing equations of motion of MR sandwich beam which can be expressed in the
finite element form as

M €dþKd¼ F (23)

where M, K and F are the global system mass and stiffness matrices and global force vector, respectively.
For the partially treated sandwich beam, the matrices M and K are formulated by imposing compatibility conditions

which are identical transverse and axial displacements and the slopes at the interfaces of the elastic material and MR-fluid
segments within the mid-layer of the beam. For the beam with three mid-layer segments, shown in Fig. 1(b), these
conditions can be expressed as

wn�1ðx¼ L1Þ ¼wnðx¼ L1Þ, wnðx¼ L1þL2Þ ¼wnþ1ðx¼ L1þL2Þ

un�1ðx¼ L1Þ ¼ unðx¼ L1Þ, unðx¼ L1þL2Þ ¼ unþ1ðx¼ L1þL2Þ

yn�1ðx¼ L1Þ ¼ ynðx¼ L1Þ, ynðx¼ L1þL2Þ ¼ ynþ1ðx¼ L1þL2Þ (24)

where wn, un and yn refer to the transverse and axial displacements and slope, respectively, of the segment n.

2.3. Ritz formulation

The governing equations of motion of the partially treated MR sandwich beam are also formulated using the Ritz
method to analytically obtain the free vibration properties of the partially treated MR sandwich beam, and to examine the
validity of the proposed finite-element formulation. For the free vibration problem, the total potential of the system,
P¼ TþV , is used to seek a solution of the form:

wðxÞ ¼
XN

i ¼ 1

cifi and uðxÞ ¼
XN

j ¼ 1

cjfj (25)
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where ci and cj are coefficients to be determined, and fi and fj are the interpolation functions satisfying the boundary
conditions. Substituting Eq. (25) into the potential function, P, a minimization problem relative to the undetermined
coefficients can be established. The application of the stationary condition @P=@ci ¼ 0, yields a set of N linear simultaneous
equations in coefficients c1, c2,y,cn such that

½KR�x2MR�c¼ 0 (26)

The solution of the above equation yields the natural frequencies and mode shapes of the partially treated MR sandwich
beam.

As it can be realized from Eq. (8), both the storage modulus G0 and loss modulus G
00

are directly dependent on the
applied magnetic field B. Thus by changing the magnetic field the stiffness and damping of the MR sandwich beam can be
controlled and vibration attenuation can be achieved. The detailed effect of magnetic field on the stiffness matrix can also
be realized from the developed element stiffness matrices provided in Appendix A.
3. Experimental study and validation of the developed finite element formulation

Laboratory experiments were performed on a partially treated MR sandwich beam to investigate its essential properties
and to examine the validity of the proposed finite element model and Ritz formulation. Two thin aluminum strips
(300 mm�30 mm�0.9 mm) with zero magnetic permeability were used to fabricate a partially treated MR sandwich
beam. The strips were arranged to create a uniform 1.15 mm gap for the MR fluid (MRF-122EG), which was filled only at
the center of the mid-layer of the beam over a length of 100 mm and aluminum was located at the remaining portion of the
mid-layer, as shown in Fig. 3. In order to maintain the uniform gap and contain the fluid in between the top and bottom
layers, 1.15 mm thick high strength Buna-N rubber was applied around the edges using an adhesive. The width of this
rubber layer was in the order of 1.5 mm. The sandwich beam was clamped to a support that was mounted on an electro-
dynamic vibration exciter, while permanent magnets were used to generate the magnetic field over the beam. Different
magnetic field intensity was realized by varying the vertical position of the permanent magnets with respect to the beam,
which was measured near the beam surfaces using a Gauss meter. The measurements were performed in the absence of
permanent magnets (0 G) and four different positions of the magnets leading to field intensities of approximately 75, 175,
400 and 500 G at the beam surfaces.

Both free and forced vibration responses of the partially treated MR sandwich beam were measured. For the
measurement of forced response, a single-axis accelerometer, oriented along the z-axis, was installed close to the free edge
of the beam, to measure the acceleration response. A single-axis accelerometer was also installed at the support to
measure the acceleration due to excitation. This acceleration signal also served as the feedback for the vibration exciter
controller. The schematic and photograph of the experimental setup is shown in Fig. 4. The forced vibration responses of
the partially treated MR sandwich beam were measured under a white-noise vibration spectrum with nearly constant
power spectrum density (PSD) in the 1–300 Hz frequency range at three different magnetic field intensities (0, 75 and
175 G). The forced responses were measured in terms of the transfer function of the accelerations at the free end and the
support, using the H1 function of the signal analyzer (Bruel & Kjaer 2035). The natural frequencies of the sandwich beam
were subsequently identified from the peaks in the frequency response function. The forced vibration response could not
be performed under higher magnetic field intensities (400 and 500 G) due to very small clearance between the beam and
magnets, which caused repetitive locking of the beam with the magnets. The natural frequencies under these fields were
thus extracted from the frequency spectrum of the free vibration response of the partially treated MR sandwich beam to a
very low-level perturbation. The complex shear modulus of the MR fluid, MRF-122EG, used in the test specimen was
estimated by performing a free oscillation experiment on the fully treated MR sandwich beam [26]. Both the storage and
shear moduli were expressed by the following second-order polynomial function with respect to the magnetic field
intensity:

G0ðBÞ ¼�3:3691B2þ4997:5Bþ0:873� 106
Fig. 3. The test specimen of a partially treated MR fluid sandwich beam.
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Fig. 4. Experimental setup: (a) block diagram of the experimental setup, and (b) photograph of the partially treated MR sandwich beam experimental

setup.

V. Rajamohan et al. / Journal of Sound and Vibration 329 (2010) 3451–34693458
G
00

ðBÞ ¼ �0:9B2þ0:8124� 103Bþ0:1855� 106 (27)

Now the developed finite element and Ritz formulations for the partially treated MR sandwich beam are validated by
comparing the computed natural frequencies with those identified from the free and forced vibration responses of the
beam. The simulations were performed by considering the material properties as: r1=r3=2700 kg/m3; E1=E3=68 GPa;
rr=1233 kg/m3 and r2=3500 kg/m3. Table 1 lists the comparisons of the natural frequencies obtained from the FEM and
Ritz formulations with those obtained experimentally for the first three modes under different field intensities. A good
agreement could be observed between the computed and measured frequencies, irrespective of the field intensity and the
mode. Furthermore, the results obtained from the proposed finite element model are in close agreement with those
derived from the Ritz method for the range of field intensities and modes considered.
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Table 1
Comparison of natural frequencies of a partially treated cantilever MR-sandwich beam derived from the finite-element and Ritz formulations with the

measured frequencies.

Field intensity (G) Mode Natural frequencies (Hz)

Measured FEM Ritz method

Results Percent deviation Results Percent deviation

0 1 15 15.88 5.54 14.79 1.40

2 85 80.96 4.75 83.13 2.20

3 228 222.55 2.39 220.61 3.24

75 1 16 17.06 6.21 16.26 1.60

2 87 82.26 5.45 85.88 1.29

3 231 225.46 2.39 224.34 2.88

175 1 17 18.16 6.39 17.72 4.06

2 90 83.68 7.02 88.52 1.64

3 235 228.54 2.75 228.50 2.77

400 1 19 19.56 2.86 19.71 3.60

2 94 85.81 8.71 93.19 0.86

3 239 233.08 2.48 234.94 1.70

500 1 21 19.89 5.29 20.20 3.81

2 95 86.37 9.08 94.33 0.71

3 240 234.26 2.39 236.68 1.38

Fig. 5. Various configurations of partially treated MR fluid sandwich beam.
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4. Parametric studies

The properties of a partially treated MR-fluid sandwich beam are strongly influenced by many fluid and structure-
related parameters such as field intensity, fluid layer thickness, complex shear modulus of the MR fluid, beam geometry
and boundary conditions. Apart from these, the properties could also be identified by the number, size and locations of the
MR-fluid segments in case of a partially treated structure. Here in this study, the proposed finite element model is used to
investigate the effects of variations in the location and lengths of the MR fluid segment of the beam on the natural
frequencies and loss factor under different magnetic field intensities. The influence of length and locations of such
segments on the transverse vibration response are also investigated. For this purpose four different configurations of the
localized MR damping treatments, denoted as ‘A’, ‘B’, ‘C’ and ‘D’ (Fig. 5), are considered together with different boundary
conditions namely simply supported (SSB), clamped–free (CFB) and clamped–clamped (CCB). The total length of the multi-
layer beam is divided into 24 segments of equal length, while the MR fluid treatment is applied to selected segments or
pockets of the structure. The remaining segments of the beam are considered to be of aluminum material. The total length
of the MR fluid layer in all the configurations is assumed to be constant to facilitate relative property analyses. The
simulation results are obtained by considering identical baseline thickness of 1 mm of the elastic and fluid layers, while the
material and all other properties of the layers are identical to those described in Section 3.

The validity of the developed finite element formulations for the four different configurations considered has been
demonstrated by comparing the natural frequencies corresponding to the first three modes obtained through FEM with
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Ritz formulation under simply supported end conditions without any magnetic field and the results are presented in
Table 2. A good agreement could be observed between the natural frequencies computed through FEM and Ritz
formulations.
4.1. Influence of magnetic field intensity on natural frequencies

The influence of variations in the magnetic field intensity on the natural frequencies for the different configurations of a
partially treated MR sandwich beam is investigated under different end conditions. The results attained from the FEM in
terms of natural frequencies corresponding to the first five modes are summarized in Tables 3 and 4 for the four
configurations subject to three different field intensities (0, 250 and 500 G). It can be seen from Table 3 that the natural
frequencies corresponding to all the modes increase with increasing magnetic field, irrespective of the configuration
considered. The increase in the natural frequencies with increasing magnetic field can be attributed to increase in the
complex shear modulus of the MR fluid and thus the structure stiffness under a higher magnetic field, which is evident
from the element stiffness matrix presented in Appendix A. This confirms the potential of the MR fluid treatment to control
the response of the structure. This trend of increasing natural frequency with the applied magnetic field intensity has also
been represented in fewer studies on fully treated beams [21–24,26].

Table 4 summarizes the influence of variations in different boundary conditions, including the simply supported (SSB),
clamped–free (CFB) and clamped–clamped (CCB) conditions, on the natural frequencies of a partially treated MR-fluid
sandwich beam structure at a magnetic field intensity of 500 G. The results are presented for all the four configurations and
Table 2
Comparison of natural frequencies of a partially treated simply supported MR-sandwich beam derived from the finite-element with Ritz formulations at

the magnetic field of 0 G.

Configuration Mode Natural frequencies (Hz)

FEM Ritz method Percent deviation

A 1 28.30 29.04 2.55

2 198.14 201.65 1.74

3 473.74 475.71 0.41

B 1 33.40 33.93 1.56

2 113.58 114.95 1.19

3 484.07 486.35 0.47

C 1 34.16 35.29 3.20

2 126.21 125.29 0.73

3 270.68 269.75 0.34

D 1 50.10 49.94 0.32

2 163.94 164.70 0.46

3 473.99 476.58 0.54

Table 3
Influence of variations in the magnetic field intensity on the natural frequencies of different configurations of a partially treated simply supported MR

sandwich beam.

Field intensity (G) Configuration Mode number

1 2 3 4 5

0 A 28.30 198.14 473.74 694.21 1114.10

B 33.40 113.58 484.07 742.85 1247.70

C 34.16 126.21 270.68 906.34 1170.50

D 50.10 163.94 473.99 605.89 965.40

250 A 29.86 206.33 479.52 700.13 1127.60

B 35.61 116.02 493.07 751.09 1252.10

C 36.63 129.05 273.94 915.50 1177.80

D 54.20 168.26 484.31 616.8 970.44

500 A 30.68 210.47 482.73 703.46 1135.30

B 36.77 117.38 498.14 755.59 1254.60

C 37.95 130.62 275.82 920.79 1182.00

D 56.37 170.64 490.24 623.16 973.41
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Table 4
Influence of variations in the end conditions on the natural frequencies of the fully and partially treated MR sandwich beams at the magnetic field of

500 G.

End conditions Configuration Mode number

1 2 3 4 5

Simply supported Fully treated beam 55.89 128.95 233.97 371.00 543.05

Partially treated beam A 30.68 210.47 482.73 703.46 1135.30

B 36.77 117.38 498.14 755.59 1254.60

C 37.95 130.62 275.82 920.79 1182.00

D 56.37 170.64 490.24 623.16 973.41

Clamped–free Fully treated beam 16.23 82.20 180.78 302.78 458.30

Partially treated beam A 20.36 88.31 285.59 655.09 934.52

B 18.31 101.18 212.42 608.96 911.77

C 18.07 97.42 239.26 383.43 1061.80

D 13.27 94.73 227.70 690.62 988.36

Clamped–clamped Fully treated beam 70.75 162.30 285.50 440.48 629.52

Partially treated beam A 113.69 300.24 654.74 931.05 1320.60

B 139.03 241.52 628.35 924.01 1525.00

C 117.61 299.61 411.70 1076.80 1450.00

D 74.87 201.83 649.90 903.64 1168.30
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compared with those of fully treated MR sandwich beams subject to the same magnetic field. It can be observed that the
natural frequencies of the partially treated beam are generally greater than those of the fully treated beam, irrespective of
the configuration, end conditions and modes of vibration. This is primarily attributed to the contributions of the aluminum
segment replacing the MR fluid in the partially treated configurations, which also yields lower mass compared to the fully
treated beam. The above trend, however, is not evident for the fundamental and second mode of the configurations A, B & D
and B, respectively, with simply supported end conditions and fundamental mode of the configuration D with clamped–
free end conditions, which can be related to the relative changes in the stiffness and mass corresponding to the
fundamental mode. In other words, even though the mass of the beam has been decreased considerably in partially treated
configurations compared to the fully treated beam, the decrease in stiffness would be relatively larger than that of mass
corresponding to the fundamental mode. The results also show that depending on the mode of vibration, the natural
frequency of a particular partially treated configuration may be considerably higher than those of the other configuration,
irrespective of the end conditions, which can also be related to the relative changes in the stiffness and mass of the beam.
Furthermore, as expected, the clamped–clamped and clamped–free end conditions yield the highest and the lowest natural
frequencies, respectively, for all modes considered, irrespective of the magnetic field intensity and the treatment
configuration considered.
4.2. Influence of magnetic field intensity on loss factor

The loss factor is computed as the ratio of the square of the imaginary component of the complex natural frequency to
that of the real component [21]. The influence of variations in the magnetic field intensity on the loss factor corresponding
to the first five modes for the various configurations of a partially treated MR sandwich beam is investigated and compared
with those of fully treated MR sandwich beam for different end conditions under magnetic field intensities of 0, 250 and
500 G and the results are summarized in Table 5. The results generally show that the loss factor increases with increasing
magnetic field intensity for all the configurations considered. The loss factor is merely the ratio of energy dissipated per
radian to the total strain energy, both of which increase with the magnetic field. Furthermore, the dissipated energy is
directly related to the loss modulus, which increases with the field intensity as seen in Eq. (27). The relative increase in the
loss modulus and thus the dissipated energy with increase in the magnetic field, however, is greater than that in the total
strain energy, which leads to higher loss moduli under increasing magnetic field. This trend of increasing loss factor with
the applied magnetic field intensity has also been represented in fewer studies on fully treated beams [21–24,26].

The above trend, however, is not evident for the fundamental mode under simply supported and clamped–free end
conditions and few higher modes such as mode 3, mode 5 and modes 2 and 3 for the configurations A, B and D,
respectively, under clamped–free end conditions. It increases considerably under the application of the magnetic field of
intensity up to 250 G but decreases slightly with further increase in the field intensity. This can be attributed to the relative
changes in the dissipated and strain energy corresponding to the fundamental mode. The increase in the total strain energy
related to the corresponding mode with the magnetic field would be relatively smaller compared to that of energy
dissipated resulting in increase in the loss factor until the magnetic field reaches a certain value. However, a further
increase in magnetic field yields higher relative change in the total strain energy at the corresponding mode compared to
that of the energy dissipated, which results in slightly lower loss factor.
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Table 5
Influence of variations in the magnetic field intensity on the loss factor for the various configurations of a partially treated MR sandwich beam under

different end conditions.

End condition Field intensity (G) Configuration Mode number

1 2 3 4 5

SSB 0 Fully treated beam 0.0999 0.0603 0.0384 0.0253 0.0176

Partially treated beam A 0.0190 0.0147 0.0041 0.0029 0.0039

B 0.0230 0.0072 0.0062 0.0038 0.0011

C 0.0249 0.0076 0.0039 0.0033 0.0021

D 0.0283 0.0089 0.0072 0.0059 0.0017

250 Fully treated beam 0.1077 0.0772 0.0559 0.0400 0.0292

Partially treated beam A 0.0292 0.0210 0.0070 0.0049 0.0071

B 0.0346 0.0122 0.0107 0.0063 0.0021

C 0.0380 0.0127 0.0071 0.0059 0.0036

D 0.0424 0.0148 0.0126 0.0106 0.0031

500 Fully treated beam 0.0941 0.0719 0.0545 0.0405 0.0304

Partially treated beam A 0.0291 0.0215 0.0073 0.0052 0.0077

B 0.0342 0.0128 0.0112 0.0065 0.0023

C 0.0377 0.0132 0.0076 0.0064 0.0039

D 0.0419 0.0153 0.0135 0.0114 0.0034

CFB 0 Fully treated beam 0.0581 0.0597 0.0483 0.0323 0.0224

Partially treated beam A 0.0458 0.0082 0.0096 0.0044 0.0019

B 0.0485 0.0137 0.0033 0.0047 0.0034

C 0.0492 0.0154 0.0044 0.0020 0.0029

D 0.0436 0.0144 0.0055 0.0030 0.0042

250 Fully treated beam 0.0518 0.0661 0.0615 0.0472 0.0353

Partially treated beam A 0.0485 0.0133 0.0136 0.0076 0.0034

B 0.0520 0.0214 0.0059 0.0080 0.0051

C 0.0530 0.0240 0.0078 0.0036 0.0053

D 0.0493 0.0197 0.0081 0.0049 0.0066

500 Fully treated beam 0.0431 0.0588 0.0570 0.0462 0.0357

Partially treated beam A 0.0414 0.0137 0.0132 0.0080 0.0036

B 0.0447 0.0216 0.0063 0.0085 0.0050

C 0.0456 0.0242 0.0084 0.0039 0.0057

D 0.0439 0.0189 0.0081 0.0051 0.0067

CCB 0 Fully treated beam 0.0566 0.0381 0.0262 0.0183 0.0133

Partially treated beam A 0.0039 0.0106 0.0045 0.0020 0.0029

B 0.0059 0.0024 0.0045 0.0038 0.0013

C 0.0076 0.0028 0.0016 0.0029 0.0021

D 0.0079 0.0027 0.0022 0.0022 0.0013

250 Fully treated beam 0.0702 0.0536 0.0405 0.0301 0.0227

Partially treated beam A 0.0066 0.0162 0.0077 0.0035 0.0054

B 0.0098 0.0043 0.0079 0.0063 0.0024

C 0.0130 0.0049 0.0030 0.0052 0.0037

D 0.0137 0.0049 0.0040 0.0041 0.0023

500 Fully treated beam 0.0640 0.0515 0.0406 0.0310 0.0239

Partially treated beam A 0.0069 0.0161 0.0081 0.0038 0.0059

B 0.0101 0.0046 0.0084 0.0065 0.0026

C 0.0136 0.0053 0.0033 0.0056 0.0040

D 0.0145 0.0053 0.0043 0.0044 0.0025
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It can also be observed that all the configurations with clamped–free and clamped–clamped end conditions yield the
highest and lowest loss factors, respectively, among the end conditions considered at all levels of magnetic field. This can
be related to the fact that the clamped–clamped and clamped–free end conditions have the highest and lowest strain
energies, respectively, which result the corresponding lowest and highest loss factors.

Furthermore, the results show that the loss factor due to the fully treated MR sandwich beam is generally higher than
those of the partially treated beams irrespective to the configurations and end conditions considered. This can be
attributed to the relatively smaller length of the MR fluid layer in partially treated beams compared to that of the fully
treated beam, which yields lower dissipated energy. The above trend, however, is not evident for the fundamental mode of
the configurations B and C at magnetic field intensity of 250 G and B, C and D with magnetic field intensity of 500 G under
clamped–free end conditions. This can be again related to the relative changes in the dissipated energy and the total strain
energy at the lower mode. The increase in the strain energy of the partially treated beam corresponding to the lower modes
would be relatively smaller than that of the dissipated energy.
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4.3. Influences of location of MR fluid

The results presented in Tables 3–5 clearly illustrate the influence of location of the MR-fluid segments on both the
natural frequencies and loss factors corresponds to the first five modes in which the total length of the MR fluid treatment
is identical in all the configurations. The influence of location of the treatment is further investigated by considering the
configuration A with simply supported and clamped–free end conditions. Four different locations of the partial treatment
are considered for the analysis, as shown in Fig. 6. The 75 mm MR fluid treatment is applied over six different consecutive
elements of the 24-element sandwich beam, which are denoted as A1, A2, A3 and A4 involving fluid treatments over 1–6,
7–12, 13–18 and 19–24 elements, respectively, as shown in Fig. 6. The results obtained in terms of natural frequencies and
loss factor corresponding to the first five modes of the four arrangements are summarized in Tables 6 and 7, respectively,
under a magnetic field of 500 G. The tables also illustrate the results attained for configuration A, where the treatment is
applied over elements 10–15. It can be observed that due to the nature of the symmetry of the simply supported end
conditions, the natural frequencies and the loss factor for A1 & A4 and A2 & A3 arrangements are identical. The above
trend, however, is not evident for the asymmetric clamped–free end conditions. It can also be seen that locating the
MR-fluid segments at the boundary edges of the simply supported end conditions generally yields the higher loss factor
except in the modes 2 and 4. For modes 2 and 4, locating the MR-fluids segments at the mid-span of the beam yields higher
loss factor. It should be noted that such type variation could not be observed under clamped–free end conditions. However,
the results generally show that the location of MR fluid pockets significantly affect the natural frequency and loss factor,
irrespective of the end conditions and the mode of vibration.

The effect of location of the MR-fluid treatment is further investigated by evaluating the deflection modes
corresponding to the first four modes. For this purpose, the mode shapes of the four configurations of the partially
treated simply supported beam are evaluated. Fig. 7 illustrates the first four mode shapes of the partially treated MR
sandwich beam. The results are attained in the absence of the magnetic field and compared with those of a fully treated
beam. The results suggest that the partial treatment of the beam could alter the deflection mode, particularly the location
of the peak normalized deflection. A fully treated beam, owing to its symmetry consistently reveals harmonic deflection
Fig. 6. Different arrangements of configuration A of a partially treated MR sandwich beam.

Table 6
Influence of variations in the location of MR fluid on the natural frequency of configuration A of the partially treated MR sandwich beam at the magnetic

field of 500 G.

End conditions Mode number Natural frequency (Hz)

A (10–15) A1 (1–6) A2 (7–12) A3 (13–18) A4 (19–24)

Simply supported 1 30.68 68.51 33.62 33.62 68.51

2 210.47 190.59 203.51 203.51 190.59

3 482.73 470.71 412.89 412.89 470.71

4 703.46 740.77 816.49 816.49 740.77

5 1135.30 1190.90 1205.40 1205.40 1190.90

Clamped–free 1 20.36 10.49 16.38 24.76 28.48

2 88.31 113.10 106.08 85.31 150.89

3 285.59 282.45 319.09 278.21 297.29

4 655.09 617.74 557.30 540.04 628.62

5 934.52 937.36 980.27 972.65 952.46
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Table 7
Influence of variations in the location of MR fluid on the loss factor of configuration A of the partially treated MR sandwich beam at the magnetic field of

500 G.

End conditions Mode number Loss factor

A (10–15) A1 (1–6) A2 (7–12) A3 (13–18) A4 (19–24)

Simply supported 1 0.02908 0.05066 0.03343 0.03343 0.05066

2 0.02145 0.02005 0.01746 0.01746 0.02005

3 0.00731 0.01081 0.00956 0.00956 0.01081

4 0.00523 0.01082 0.00888 0.00888 0.01082

5 0.00766 0.00361 0.00320 0.00320 0.00361

Clamped–free 1 0.04135 0.04952 0.04591 0.03042 0.01182

2 0.01371 0.02164 0.01448 0.02241 0.01865

3 0.01319 0.00887 0.00947 0.01303 0.01575

4 0.00797 0.00567 0.00652 0.00585 0.01020

5 0.00361 0.00733 0.00858 0.00872 0.01391

Fig. 7. First four mode shapes of the fully and partially treated MR sandwich beam without applying magnetic field: (a) Mode 1, (b) Mode 2, (c) Mode 3,

and (d) Mode 4.
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patterns. The above trend could not be observed in partially treated beams due to the partial location of MR-fluid
segments. However, it can be observed that the configuration D yields the lowest peak deflection mode shape under modes
3 and 4. This can be attributed to the highest loss factor at the corresponding modes which is evident from Table 5.
Although the configuration D yields higher loss factor even at the fundamental mode, such type of variation could not be
observed. This can be related to the fact that the total strain energy dominates the dissipated energy as it can be realized
from Table 3. This yields the higher natural frequency and hence the configuration D at mode 1 could not yield lower peak
deflection mode shape.
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4.4. Influence of the length of MR fluid layer

The influences of variation in the length of MR fluid treatment on the natural frequencies of a simply supported partially
treated MR beam (configuration A) is further investigated under the magnetic field of 500 G. The simulations are performed
by considering MR fluid treatments over 25, 50, 75 and 100 percent of the beam length. Fig. 8 illustrates the variations in
the natural frequencies of the configuration A with different lengths of the treatment corresponding to the first five modes.
The results show significant effect of the fluid treatment length on the higher mode natural frequencies, while the effect is
small on the lower modes. The results generally show a decrease in the higher modes natural frequencies with increasing
length of the MR-fluid treatment, although the effect is highly nonlinear. This can be attributed to relatively greater change
in the beam mass than that in the stiffness corresponding to higher modes, when the length of MR-fluid layer is increased.
This trend, however, is not evident for the fundamental mode frequency, where the relative variation in the beam stiffness
could be greater than that in the beam mass with increasing the fluid treatment length.
Fig. 8. Influence of MR fluid layer length on the natural frequencies of a simply supported partially treated MR sandwich beam (configuration A) under

the magnetic field of 500 G.

Fig. 9. Influence of magnetic field on the transverse response of configuration D of a simply supported partially treated MR fluid sandwich beam.
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4.5. Transverse response of the partially treated MR sandwich beam

The influence of magnetic field on the transverse response of configuration D of a simply supported partially treated MR
sandwich beam is investigated by considering sinusoidal excitation applied at a distance of 175 mm from the left support.
The dynamic response characteristics of the beam were simulated under a 1 N force excitation over the frequency range of
1–550 Hz for three different magnetic field intensities of 0, 250 and 500 G. The amplitude spectrum of the transverse
displacement was evaluated at a distance of 187.5 mm from the left support and is illustrated in Fig. 9. The results show
increase in the natural frequencies (frequencies corresponding to response peaks) with increasing magnetic field, as
observed from the free vibration responses. The peak response magnitudes corresponding to all the modes also decrease
with increasing magnetic field, which may be attributed to higher loss factors under higher magnetic fields. The changes in
the peak magnitudes, however, appear to be nonlinear functions of the magnetic field. An increase in the magnetic field
from 0 to 250 G yields substantial reduction in the peak amplitudes, which are approximately 11.6, 7.5 and 6.9 percent,
respectively, for the first three modes considered in the analysis.
Fig. 10. Transverse displacement of fully and partially treated MR sandwich beam at a magnetic field of 250 G under simply supported end conditions.

Table 8
Location and magnitude of the maximum displacement of transverse displacement at magnetic field of 500 G for simply supported end conditions.

Excitation frequency (Hz) Configuration Location of the maximum displacement

from the left end (mm)

Magnitude of the maximum

displacement (mm)

30.23 Fully treated 181 0.212

A 168 0.748

B 207 0.438

C 168 0.441

D 194 0.195

38.20 Fully treated 181 0.212

A 168 0.752

B 207 0.439

C 168 0.442

D 194 0.195

57.29 Fully treated 181 0.213

A 168 0.767

B 207 0.445

C 168 0.448

D 194 0.196
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The transverse response of various configurations of simply supported partially treated MR sandwich beams is also
evaluated and compared with that of fully treated MR sandwich beam at a magnetic field of 250 G by considering a
sinusoidal excitation force of 1 N magnitude acting at a distance of 175 mm from the left support. Again, the transverse
displacement is calculated at a distance of 187.5 mm from the left support over a frequency range of 1–550 Hz and the
results are shown in Fig. 10. Furthermore, the magnitude and location (from the left end) of the maximum displacement of
the beam under the magnetic field of 500 G are evaluated at various excitation frequencies (30.23, 38.20 and 57.29 Hz)
which are approximately equal to the first natural frequency of fully and various configurations of partially treated MR
sandwich beam and compared with that of fully treated MR sandwich beam. The results are listed in Table 8. It can be
observed that for the same excitation frequency the location of the maximum displacement differs for the various
configurations. Also the minimum magnitude of the maximum displacement occurs in the configuration D and is
approximately equal to that of fully treated MR sandwich beam for the excitation frequencies considered in the analysis.
This can be related to the higher loss factor for the fully treated and configuration D of the partially treated MR sandwich
beam which is evident from Table 5. It can also be observed that the largest magnitude of maximum displacement occurs
at the configuration A for all the excitation frequencies considered in the analysis. This is due to the fact that the
configuration A has the lowest loss factor at the fundamental mode as evident from Table 5. This confirms that the MR fluid
could be applied at any critical locations of the structure to suppress the vibration effectively.

5. Conclusions

In this study, vibration response of a partially treated multi-layered beam with MR fluid as a sandwich layer between
two layers of the continuous elastic structure has been analyzed. First, mathematical model of the partially treated MR
composite beam was developed in finite element form and Ritz formulation to simulate the dynamic response of the
system. The experimental study is then conducted to characterize the MR fluid behavior and to validate the developed
formulations. Using the developed finite element formulation, different configurations of a partially treated MR sandwich
beam has been studied and then various parametric studies have been conducted to demonstrate the controllable
capabilities. It has been shown that the location and length of the MR fluid segments have significant effect on the natural
frequencies and the loss factor of the partially treated MR sandwich structure in addition to the intensity of the magnetic
field and the boundary conditions. It has been demonstrated that the MR fluid pockets should be located at a particular
location depending on the boundary conditions and the mode of vibration to be controlled for the effective vibration
suppression. Furthermore, the mode shape of the partially treated MR sandwich beam could be controlled by locating the
MR fluid layers at the desired locations. It has also been shown that the natural frequency at the higher modes could be
increased with decreasing the length of MR fluid layer. Transverse response of a partially treated MR sandwich beam also
confirms that the amplitude of vibration could be considerably reduced using controllable MR fluids and conveniently
applied them to partial or more critical components of a large structure to realize more efficient vibration control.

Appendix A. Coefficients of element stiffness and mass matrices for the partially treated MR fluid multi-layer beam

The symmetric (6�6) elemental mass and stiffness matrices derived using Lagrange’s energy equation are summarized
below.

Stiffness matrix of the sandwich beam element comprising MR fluid within the mid-layer:
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and
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Mass matrix of the sandwich beam element comprising MR fluid within the mid-layer:
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0
b6
_N2
_N5 dx, m26 ¼

Z le

0
b5N2N6 dxþ

Z le

0
b6
_N2
_N6 dx

m33 ¼

Z le

0
b5N2

3 dxþ

Z le

0
b6
_N

2

3 dx, m34 ¼

Z le

0
b3N4

_N3 dx

m35 ¼

Z le

0
b5N3N5 dxþ

Z le

0
b6
_N3
_N5 dx m36 ¼

Z le

0
b5N3N6 dxþ

Z le

0
b6
_N3
_N6 dx

m44 ¼

Z le

0
b1N2

4 dxþ

Z le

0
b4N2

4 dx, m45 ¼

Z le

0
b3N4

_N5 dx, m46 ¼

Z le

0
b3N4

_N6 dx

m55 ¼

Z le

0
b5N2

5 dxþ

Z le

0
b6
_N

2

5 dx, m56 ¼

Z le

0
b5N5N6 dxþ

Z le

0
b6
_N5
_N6 dx

m66 ¼

Z le

0
b5N2

6 dxþ

Z le

0
b6
_N

2

6 dx

where

b1 ¼ r1A1þe2r3A3, b2 ¼ r2I2 �
ð1þeÞ

h2

� �2

, b3 ¼ ðr2I2þrrIrÞ
D

h2

� �
�
ð1þeÞ

h2

� �

b4 ¼ ðr2I2þrrIrÞ
ð1þeÞ

h2

� �2

, b5 ¼ ðr1A1þr2A2þrrArþr3A3Þ

b6 ¼ ðr2I2þrrIrÞ
D

h2

� �2

References

[1] X.Q. He, T.Y. Ng, S. Sivasahankar, K.M. Liew, Active control of FGM plates with integrated piezoelectric sensors and actuators, International Journal of
Solids and Structures 38 (2001) 1641–1655.

[2] M.J. Lam, D.J. Inman, W.R. Saunders, Vibration control through passive constrained layer damping and active control, Journal of Intelligent Materials
and Structures 8 (1997) 663–677.

[3] Y. Gu, R.L. Clark, C.L. Fuller, A.C. Zander, Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride
(PWDF) modal sensors, Journal of Vibration and Acoustics 116 (1994) 303–308.

[4] B.F. Spencer Jr., S. Nagarajaiah, State of the art of structural control, Journal of Structural Engineering 129 (2003) 845–856.
[5] Y.L. Xu, W.L. Qu, J.M. Ko, Seismic response control of frame structures using magnetorheological/electrorheological dampers, Earthquake Engineering

and Structural Dynamics 29 (2000) 557–575.
[6] R. Stanway, J.L. Sproston, A.K. El Wahed, Applications of electrorheological fluids in vibration control: a survey, Smart Materials and Structures 5

(1996) 464–482.



ARTICLE IN PRESS

V. Rajamohan et al. / Journal of Sound and Vibration 329 (2010) 3451–3469 3469
[7] G.Z. Yao, F.F. Yap, G. Chen, W.H. Li, S.H. Yeo, MR damper and its application for semi-active control of vehicle suspension system, Mechatronics 12
(2002) 963–973.

[8] H.U. Oh, J. Onoda, An experimental study of a semi-active magneto-rheological fluid variable damper for vibration suppression of truss structures,
Smart Materials and Structures 11 (2002) 156–162.

[9] T. Pranoto, K. Nagaya, A. Hosoda, Vibration suppression of plate using linear MR fluid passive damper, Journal of Sound and Vibration 276 (2004)
919–932.

[10] K.D. Weiss, J.D. Carlson, D.A. Nixon, Viscoelastic properties of magneto- and electro-rheological fluids, Journal of Intelligent Materials and Structures 5
(1994) 772–775.

[11] J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering, Proceedings of Institution
of Mechanical Engineers Part L: Journal of Materials 215 (2001) 165–174.

[12] J.D. Carlson, K.D. Weiss, A growing attraction to magnetic fluids, Machine Design 66 (1994) 61–64.
[13] S.J. Dyke, B.F. Spencer, M.K. Sain, J.D. Calrson, An experimental study of MR dampers on seismic protection, Smart Materials and Structures 7 (1998)

693–703.
[14] S.B. Choi, Vibration control of flexible structures using ER dampers, Journal of Dynamic Systems, Measurement and Control, Transaction of ASME 121

(1999) 134–138.
[15] Z.G. Ying, W.Q. Zhu, A stochastic optimal semi-active control strategy for ER/MR dampers, Journal of Sound and Vibration 259 (2003) 45–62.
[16] G.J. Hiemenz, N.M. Wereley, Seismic response of civil structures utilizing semi-active MR and ER bracing systems, Journal of Intelligent Materials and

Structures 10 (1999) 646–651.
[17] M.V. Gandhi, B.S. Thomson, S.B. Choi, A new generation of innovative ultra-advanced intelligent composite materials featuring electro-rheological

fluids: an experimental investigation, Journal of Composite Materials 23 (1989) 1232–1255.
[18] Y. Choi, A.F. Sprecher, H. Conrad, Vibration characteristics of a composite beam containing an electrorheological fluid, Journal of Intelligent Materials

and Structures 1 (1990) 91–104.
[19] M. Yalcintas, J.P. Coulter, Analytical modeling of electrorheological materials based adaptive beams, Journal of Intelligent Materials and Structures 6

(1995) 488–497.
[20] M. Yalcintas, J.P. Coulter, Electrorheological materials based non-homogeneous adaptive beams, Smart Materials and Structures 7 (1998) 128–143.
[21] M. Yalcintas, H. Dai, Magnetorheological and electrorheological materials in adaptive structures and their performance comparison, Smart Materials

and Structures 8 (1999) 560–573.
[22] M. Yalcintas, H. Dai, Vibration suppression capabilities of magneto-rheological materials based adaptive structures, Smart Materials and Structures 13

(2004) 1–11.
[23] Q. Sun, J.X. Zhou, L. Zhang, An adaptive beam model and dynamic characteristics of magnetorheological materials, Journal of Sound and Vibration 261

(2003) 465–481.
[24] Z.F. Yeh, Y.S. Shih, Dynamic characteristics and dynamic instability of magnetorheological based adaptive beams, Journal of Composite Materials 40

(2006) 1333–1359.
[25] R.A. DiTaranto, Theory of vibratory bending of elastic and viscoelastic layered finite-length beams, Journal of Applied Mechanics, Transactions of ASME,

Series E 87 (1965) 881–886.
[26] V. Rajamohan, R. Sedaghati, S. Rakheja, Vibration analysis of a multi-layer beam containing magnetorheological fluid, Smart Materials and Structures

19 (2010) 015013 12pp.
[27] G. Haiqing, L.M. King, T.B. Cher, Influence of a locally applied electrorheological fluid layer on vibration of a simple cantilever beam, Journal of

Intelligent Materials and Structures 4 (1993) 379–384.
[28] G. Haiqing, L.M. King, Vibration characteristics of sandwich beams partially and fully treated with electrorheological fluid, Journal of Intelligent

Materials and Structures 8 (1997) 401–413.
[29] D.J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, Journal of Sound and

Vibration 10 (1969) 163–175.
[30] W.H. Li, G. Chen, S. Yeo, Viscoelastic properties of MR fluids, Smart Materials and Structures 8 (1999) 460–468.
[31] Y.T. Choi, J.U. Cho, S.B. Choi, N.M. Wereley, Constitutive models of electrorheological and magnetorheological fluids using viscometers, Smart

Materials and Structures 14 (2005) 1025–1036.
[32] F.D. Goncalves, J.H. Koo, M. Ahmadian, A review of the state of the art in magnetorheological fluid technologies—part I: MR fluid and MR fluid

models, The Shock and Vibration Digest 38 (2006) 203–219.
[33] S.S. Rao, The Finite Element Method in Engineering, Butterworth Heinemann, Boston, 1999.


	Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid
	Introduction
	Dynamic model of a partially treated multi-layer beam
	Formulation of energy equations
	Finite element formulation
	Ritz formulation

	Experimental study and validation of the developed finite element formulation
	Parametric studies
	Influence of magnetic field intensity on natural frequencies
	Influence of magnetic field intensity on loss factor
	Influences of location of MR fluid
	Influence of the length of MR fluid layer
	Transverse response of the partially treated MR sandwich beam

	Conclusions
	Coefficients of element stiffness and mass matrices for the partially treated MR fluid multi-layer beam
	References




